
D03 – Partial Differential Equations

D03UAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03UAF performs at each call one iteration of the Strongly Implicit Procedure. It is used to calculate
on successive calls a sequence of approximate corrections to the current estimate of the solution when
solving a system of simultaneous algebraic equations for which the iterative up-date matrix is of five-point
molecule form on a two-dimensional topologically-rectangular mesh. (‘Topological’ means that a polar
grid, for example (r, θ), can be used, being equivalent to a rectangular box.)

2 Specification

SUBROUTINE D03UAF(N1, N2, N1M, A, B, C, D, E, APARAM, IT, R,
1 WRKSP1, WRKSP2, IFAIL)
INTEGER N1, N2, N1M, IT, IFAIL
real A(N1M,N2), B(N1M,N2), C(N1M,N2), D(N1M,N2),
1 E(N1M,N2), APARAM, R(N1M,N2), WRKSP1(N1M,N2),
2 WRKSP2(N1M,N2)

3 Description

Given a set of simultaneous equations
Mt = q (1)

(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the solution t may be
obtained iteratively from a starting approximation t(1) by the formulae

r(n) =q − Mt(n)

Ms(n)=r(n)

t(n+1)=t(n) + s(n).

Thus r(n) is the residual of the nth approximate solution t(n), and s(n) is the update change vector.

D03UAF determines the approximate change vector s corresponding to a given residual r, i.e., it
determines an approximate solution to a set of equations

Ms = r (2)

where r is a known vector of length n1 × n2, and M is a square (n1 × n2) by (n1 × n2) matrix. The
system (2) must be of five-diagonal form

aijsi,j−1 + bijsi−1,j + cijsij + dijsi+1,j + eijsi,j+1 = rij

for i = 1, 2, . . . , n1; j = 1, 2, . . . , n2, provided that cij �= 0.0. Indeed, if cij = 0.0, then the equation is
assumed to be

sij = rij .

For example, if n1 = 3 and n2 = 2, the equations take the form
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The calling program supplies the current residual r at each iteration and the coefficients of the five-
point molecule system of equations on which the up-date procedure is based. The routine performs one
iteration, using the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration parameter adjustment, to calculate the approximate solution s of the system (2). The change
s overwrites the residual array for return to the calling program. The calling program must combine this
change stored in r with the old approximation to obtain the new approximate solution for t. It must
then recalculate the residuals and, if the accuracy requirements have not been satisfied, commence the
next iterative cycle.

Clearly there is no requirement that the iterative up-date matrix passed in the form of the five-diagonal
element arrays A, B, C, D, E is the same as that used to calculate the residuals, and therefore the one
governing the problem. However the convergence may be impaired if they are not equal. Indeed, if the
system of equations (1) is not precisely of the five-diagonal form illustrated above but has a few additional
terms, then the methods of deferred or defect correction can be employed. The residual is calculated by
the calling program using the full system of equations, but the up-date formula is based on a five-diagonal
system (2) of the form given above. For example, the solution of a system of nine-diagonal equations
each involving the combination of terms with ti±1,j±1, ti±1,j , ti,j±1 and tij could use the five-diagonal
coefficients on which to base the up-date, provided these incorporate the major features of the equations.

Problems in topologically non-rectangular regions can be solved using the routine, by surrounding the
region with a circumscribing topological rectangle. The equations for the nodal values external to the
region of interest are set to zero (i.e., cij = rij = 0) and the boundary conditions are incorporated into
the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of all
zeros as the initial approximation from which the first set of residuals are determined.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and
Q will be unchanged during the iterative cycles, or for solving nonlinear elliptic equations in which case
some or all of these arrays may require updating as each new approximate solution is derived. Depending
on the nonlinearity, some under-relaxation of the coefficients and/or source terms may be needed during
their recalculation using the new estimates of the solution (see Jacobs [1]).

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive definiteness, of the matrix M and the up-date matrix formed
from the arrays A, B, C, D, E is necessary to ensure convergence.

For problems in which the solution is not unique, in the sense that an arbitrary constant can be added to
the solution, (for example Laplace’s equation with all Neumann boundary conditions), the calling program
should subtract a typical nodal value from the whole solution t at every iteration to keep rounding errors
to a minimum.

4 References

[1] Ames W F (1977) Nonlinear Partial Differential Equations in Engineering Academic Press (2nd
Edition)

[2] Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and
elliptic partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

[3] Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial
differential equations SIAM J. Numer. Anal. 5 530–558

5 Parameters

1: N1 — INTEGER Input

On entry: the number of nodes in the first co-ordinate direction, n1.

Constraint: N1 > 1.
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2: N2 — INTEGER Input

On entry: the number of nodes in the second co-ordinate direction, n2.

Constraint: N2 > 1.

3: N1M — INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, R, WRKSP1 and WRKSP2 as declared
in the (sub)program from which D03UAF is called.

Constraint: N1M ≥ N1.

4: A(N1M,N2) — real array Input

On entry: A(i, j) must contain the coefficient of the ‘southerly’ term involving si,j−1 in the (i, j)th
equation of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2. The elements of A for j = 1 must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the rectangle.

5: B(N1M,N2) — real array Input

On entry: B(i, j) must contain the coefficient of the ‘westerly’ term involving si−1,j in the (i, j)th
equation of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2. The elements of B for i = 1 must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the rectangle.

6: C(N1M,N2) — real array Input

On entry: C(i, j) must contain the coefficient of the ‘central’ term involving sij in the (i, j)th
equation of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2. The elements of C are checked
to ensure that they are non-zero. If any element is found to be zero, the corresponding algebraic
equation is assumed to be sij = rij . This feature can be used to define the equations for nodes at
which, for example, Dirichlet boundary conditions are applied, or for nodes external to the problem
of interest, by setting C(i, j) = 0.0 at appropriate points. The corresponding value of R(i, j) is set
equal to the appropriate value, namely the difference between the prescribed value of tij and the
current value of tij in the Dirichlet case, or zero at an external point.

7: D(N1M,N2) — real array Input

On entry: D(i, j) must contain the coefficient of the ‘easterly’ term involving si+1,j in the (i, j)th
equation of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2. The elements of D for i = N1 must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the rectangle.

8: E(N1M,N2) — real array Input

On entry: E(i, j) must contain the coefficient of the ‘northerly’ term involving si,j+1 in the (i, j)th
equation of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2. The elements of E for j = N2 must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the rectangle.

9: APARAM — real Input

On entry: the iteration acceleration factor. A value of 1.0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0.2 or 0.1. If divergence is
obtained, the value can be increased, typically to 2.0, 5.0 or 10.0.

Constraint: 0.0 < APARAM ≤ ((N1− 1)2 + (N2 − 1)2)/2.0.

10: IT — INTEGER Input

On entry: the iteration number. It must be initialised, but not necessarily to 1, before the first call,
and must be incremented by one in the calling program for each subsequent call. The routine uses
the counter to select the appropriate acceleration parameter from a sequence of nine, each one being
used twice in succession. (Note that the acceleration parameter depends on the value of APARAM.)

[NP3390/19/pdf] D03UAF.3



D03UAF D03 – Partial Differential Equations

11: R(N1M,N2) — real array Input/Output

On entry: R(i, j) must contain the current residual rij on the right-hand side of the (i, j)th equation
of the system (2), for i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2.

On exit: these residuals are overwritten by the corresponding components of solution s to the system
(2), i.e., the changes to be made to the vector t to reduce the residuals supplied.

12: WRKSP1(N1M,N2) — real array Workspace
13: WRKSP2(N1M,N2) — real array Workspace

14: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, N1 < 2,

or N2 < 2.

IFAIL = 2

On entry, N1M < N1.

IFAIL = 3

On entry, APARAM ≤ 0.0.

IFAIL = 4

On entry, APARAM > ((N1 − 1)2 + (N2 − 1)2)/2.0.

7 Accuracy

The improvement in accuracy for each iteration, i.e., on each call, depends on the size of the system and
on the condition of the up-date matrix characterised by the five-diagonal coefficient arrays. The ultimate
accuracy obtainable depends on the above factors and on the machine precision . However, since
the routine works with residuals and the up-date vector, the calling program can, in most cases where at
each iteration all the residuals are usually of about the same size, calculate the residuals from extended
precision values of the function, source term and equation coefficients if greater accuracy is required. The
rate of convergence obtained with the Strongly Implicit Procedure is not always smooth because of the
cyclic use of nine acceleration parameters. The convergence may become slow with very large problems,
for example N1 = N2 = 60. The final accuracy obtained can be judged approximately from the rate of
convergence determined from the changes to the dependent variable T and in particular the change on
the last iteration.

8 Further Comments

The time taken by the routine is approximately proportional to N1×N2 for each call.

When used with deferred or defect correction, the residual is calculated in the calling program from
a different system of equations to those represented by the five-point molecule coefficients used by the
routine as the basis of the iterative up-date procedure. When using deferred correction the overall rate
of convergence depends not only on the items detailed in Section 7 but also on the difference between
the two coefficient matrices used.
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Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

9 Example

To solve Laplace’s equation in a rectangle with a non-uniform grid spacing in the x and y co-ordinate
directions and with Dirichlet boundary conditions specifying the function on the perimeter of the rectangle
equal to e(1.0+x)/y(n2) × cos(y/y(n2)).

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03UAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N1, N2, N1M, NITS
PARAMETER (N1=6,N2=10,N1M=N1,NITS=10)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real ADEL, APARAM, ARES, DELMAX, DELMN, RESMAX, RESMN
INTEGER I, IFAIL, IT, J

* .. Local Arrays ..
real A(N1M,N2), B(N1M,N2), C(N1M,N2), D(N1M,N2),

+ E(N1M,N2), Q(N1M,N2), R(N1M,N2), T(N1M,N2),
+ WRKSP1(N1M,N2), WRKSP2(N1M,N2), X(N1), Y(N2)

* .. External Subroutines ..
EXTERNAL D03UAF

* .. Intrinsic Functions ..
INTRINSIC ABS, COS, EXP, MAX, real

* .. Data statements ..
DATA X(1), X(2), X(3), X(4), X(5), X(6)/0.0e0, 1.0e0,

+ 3.0e0, 6.0e0, 10.0e0, 15.0e0/
DATA Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8),

+ Y(9), Y(10)/0.0e0, 1.0e0, 3.0e0, 6.0e0, 10.0e0,
+ 15.0e0, 21.0e0, 28.0e0, 36.0e0, 45.0e0/

* .. Executable Statements ..
WRITE (NOUT,*) ’D03UAF Example Program Results’
WRITE (NOUT,*)
APARAM = 1.0e0

* Set up difference equation coefficients, source terms and
* initial S

DO 40 J = 1, N2
DO 20 I = 1, N1

IF ((I.NE.1) .AND. (I.NE.N1) .AND. (J.NE.1) .AND. (J.NE.N2))
+ THEN

* Specification for internal nodes
A(I,J) = 2.0e0/((Y(J)-Y(J-1))*(Y(J+1)-Y(J-1)))
E(I,J) = 2.0e0/((Y(J+1)-Y(J))*(Y(J+1)-Y(J-1)))
B(I,J) = 2.0e0/((X(I)-X(I-1))*(X(I+1)-X(I-1)))
D(I,J) = 2.0e0/((X(I+1)-X(I))*(X(I+1)-X(I-1)))
C(I,J) = -A(I,J) - B(I,J) - D(I,J) - E(I,J)
Q(I,J) = 0.0e0
T(I,J) = 0.0e0

ELSE
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* Specification for boundary nodes
A(I,J) = 0.0e0
B(I,J) = 0.0e0
C(I,J) = 0.0e0
D(I,J) = 0.0e0
E(I,J) = 0.0e0
Q(I,J) = EXP((X(I)+1.0e0)/Y(N2))*COS(Y(J)/Y(N2))
T(I,J) = 0.0e0

END IF
20 CONTINUE
40 CONTINUE

* Iterative loop
WRITE (NOUT,*) ’Iteration Residual Change’
WRITE (NOUT,*)

+ ’ No Max. Mean Max. Mean’
WRITE (NOUT,*)
DO 140 IT = 1, NITS

* Calculate the residuals
RESMAX = 0.0e0
RESMN = 0.0e0
DO 80 J = 1, N2

DO 60 I = 1, N1
IF (C(I,J).NE.0.0e0) THEN

* Five point molecule formula
R(I,J) = Q(I,J) - A(I,J)*T(I,J-1) - B(I,J)*T(I-1,J) -

+ C(I,J)*T(I,J) - D(I,J)*T(I+1,J) - E(I,J)*T(I,
+ J+1)

ELSE
* Explicit equation

R(I,J) = Q(I,J) - T(I,J)
END IF
ARES = ABS(R(I,J))
RESMAX = MAX(RESMAX,ARES)
RESMN = RESMN + ARES

60 CONTINUE
80 CONTINUE

RESMN = RESMN/(real(N1*N2))
IFAIL = 0

*
CALL D03UAF(N1,N2,N1M,A,B,C,D,E,APARAM,IT,R,WRKSP1,WRKSP2,

+ IFAIL)
*
* Update the dependent variable

DELMAX = 0.0e0
DELMN = 0.0e0
DO 120 J = 1, N2

DO 100 I = 1, N1
T(I,J) = T(I,J) + R(I,J)
ADEL = ABS(R(I,J))
DELMAX = MAX(DELMAX,ADEL)
DELMN = DELMN + ADEL

100 CONTINUE
120 CONTINUE

DELMN = DELMN/(real(N1*N2))
WRITE (NOUT,99999) IT, RESMAX, RESMN, DELMAX, DELMN

* Convergence tests here if required
140 CONTINUE

* End of iterative loop
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WRITE (NOUT,*)
WRITE (NOUT,*) ’Table of calculated function values’
WRITE (NOUT,*)
WRITE (NOUT,*)

+’ I 1 2 3 4 5 6’
WRITE (NOUT,*) ’ J’
DO 160 J = 1, N2

WRITE (NOUT,99998) J, (T(I,J),I=1,N1)
160 CONTINUE

STOP
*
99999 FORMAT (1X,I3,4(2X,e11.4))
99998 FORMAT (1X,I2,1X,6(F9.3,2X))

END

9.2 Program Data

None.

9.3 Program Results

D03UAF Example Program Results

Iteration Residual Change
No Max. Mean Max. Mean

1 0.1427E+01 0.4790E+00 0.1427E+01 0.1031E+01
2 0.1098E-02 0.3871E-03 0.2176E-01 0.6158E-02
3 0.7364E-03 0.5926E-04 0.1621E-02 0.2475E-03
4 0.2036E-04 0.2914E-05 0.1810E-03 0.2259E-04
5 0.6946E-05 0.6214E-06 0.1199E-04 0.2347E-05
6 0.2267E-06 0.4215E-07 0.1245E-05 0.2270E-06
7 0.5625E-07 0.4500E-08 0.1081E-06 0.1761E-07
8 0.2305E-08 0.3998E-09 0.1289E-07 0.1794E-08
9 0.4733E-09 0.7397E-10 0.1422E-08 0.1841E-09
10 0.7109E-10 0.8598E-11 0.3214E-09 0.2791E-10

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392
6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771
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